
Chapter 1

Basics of Magnetic Resonance Imaging

MRI has been very successful for imaging parts of
the body that are stationary. The major strength
of MRI is soft tissue contrast, as illustrated in
Fig. 1.1. The major drawback of MRI has been
imaging speed. The images in Fig. 1.1 require sev-
eral minutes to acquire. Many of the new applica-
tions of MRI require much faster imaging. Two of
these are shown in Fig. 1.2. Figure 1.2a was ac-
quired and reconstructed in real-time at a rate of
10 images per second.

One of the key difficulties with high-speed imaging
methods is image reconstruction. The examples in
Fig. 1.1 are reconstructed by simply performing a
2D inverse Fast Fourier Transform. The images of
Fig. 1.2 require a much more sophisticated recon-
struction. These reconstruction methods are the
subject of this course.

1.1 Basics of MRI

While we are primarily concerned with the recon-
struction aspects of MRI, we still require a basic
understanding of how MRI works. Very complete
descriptions of MRI are provided in [1–4]. Here we
simply outline the basic elements.

The magnezation that we will ultimately use for
imaging is formed by placing the subject in a very
strong, very homogeneous magnetic field, as shown
in Fig. 1.3. This is the polarizing field, denoted
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Figure 1.1: Brain images of a normal volunteer show
excellent soft tissue contrast. Figures (a) and (b) are
axial images with two different image contrasts. Figure
(c) shows the flexibility to image any slice orientation.
These images required several minutes to acquire.

B0. At thermal equalibrium at 1.5T, a few parts
per million of the spins, typically protons, in the
subject align preferentially in the direction of the
field. This population difference is the magnetiza-
tion that we will use for imaging.

The magnetization interacts with radio frequency
energy at its characteristic Larmor frequency

ω0 = γB0 rad/s (1.1)
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a) b)

Figure 1.2: New application of MRI, such as real-time
imaging of the heart at 10 images per second (a) and the
interactive guidance of interventional procedures (b) re-
quire high-speed imaging methods, and more sophisti-
cated reconstruction techniques.

or

f0 =
γ

2π
B0 Hz (1.2)

where γ is the gyromagnetic ratio, 2π ×
4257 rad/G. Note that for most spins of interest,
such as protons, the precession direction is neg-
ative. If we apply a short RF pulse, we can tip
the magnetization away from the +z axis that is
defined by the direction of B0. MRI is inherently
spatially non-selective. If we apply an RF pulse to
a volume, all the are spins are tipped, or excited.
Unfortunately, performing the spatial encoding for
an entire volume is time consuming. Most MRI
imaging uses the idea of slice selection to image
only a slice through a subject. This is illustrated
in Fig. 1.4.
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Figure 1.3: An object placed in a strong B0 field pro-
duces a net magnetization along the direction of the
polarizing field.
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Figure 1.4: A magnetic field with a gradient in the z
direction establishes a linear relationship between posi-
tion and resonant frequency. When the sample is irra-
diated with an RF pulse at the Larmor frequency γB0,
only the spins at z = 0 are on resonance, and are tipped
into the transverse plane. Hence, only a slice is excited.

The key idea for slice selection, and all of MRI
for that matter, is the use of a small additional
field with a +z component that varies linearly in
strength with position. This is known as a gradient
field. This means that the Larmor frequency now
also varies linearly with position,

ω(z) = γGzz, (1.3)

where Gz is the gradient field strength in G/cm.
We then irradiate the subject with an RF pulse
with a narrow frequency band. Most spins in the
volume will be above or below resonance, and are
unaffected. Only the spins whose resonant fre-
quencies are in the RF pulse frequency band will be
excited. This excites signal in a a thin slab of ma-
terial perpendicular to the direction of the gradient
field. Gradient fields are available along all three
orthogonal axis, and can be combined as a vec-
tor to produce a gradient in any desired direction.
Hence, any plane orientation can be achieved. The
plane is offset in position by choosing the proper
band of RF frequencies.

Once a slice has been excited, spins precess around
B0 at ω0 = γB0. The spins are then resolved in the
remaining two directions by again using linear gra-
dient fields to change the resonant frequencies of
spins at different spatial locations. Conceptually,
if we apply a gradient in the +x direction (a field
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whose +z component varies linearly in proportion
to x position), all spins at the same x position will
precess at the same frequency. If we acquire the
signal produced by the subject, and compute its
spectrum, each frequency bin will be proportional
to how much magnetization was at that position.
Since this is integrated across all spins in the y
dimension that have the same x position, what
we get is a projection of the object looking in the
y dimension. We can then change the direction
of the gradient, collect additional projections, and
ultimately use projection-reconstruction to recon-
struct the slice, just as in X-ray computed tomog-
raphy [5–6]. This was how MRI was first proposed
[7].

In practice. MRI is much more flexible than this,
and there are many more desirable acquisition
methods. To see how these arise, we first need to
more accurately describe the nature of the received
signal in MRI.
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Figure 1.5: A magnetic field with a gradient in the x
direction again establishes a linear relationship between
position and resonant frequency. Spins at different x
positions precess at different frequencies.

1.2 Simple Signal Equation

The goal in MRI is to image the spatial distribu-
tion of the transverse magnetization of some ob-
ject. We will be denoted Mxy(x) where the x is
either a two-dimensional vector for slice-selective
imaging, or a three-dimensional vector for volu-
metric imaging. After the transverse magnetiza-
tion is produced, it precesses at a rate proportional
to the local magnetic field. This consists of a large
constant bias term B0, time-invariant local varia-
tions in this field ω(x), and the gradient fields used
for imaging G(t).

The constant term B0 provides the carrier fre-
quency for the acquisition, but will be ignored
here. The ω(x) term includes the inhomogeneity
of the B0 field, as well as spatial field variations
produced by the spatially varying susceptibility of
the subject. This will be a major concern, but will
also be neglected for the time being. The gradient
fields are time-varying magnetic fields that are de-
signed so that the component directed along B0 is
linearly proportional to position.

The precession frequency, which is proportional to
the field, is also linearly proportional to position.
The phase of a given spin is the integral of its pre-
cession frequency from the time it was created to
the time that is observed. If the applied gradient
waveform is

G(t) = Gx(t)i + Gy(t)j + Gz(t)k (1.4)

the phase of a spin at x is

φ(t) =
∫ t

0
(−γG(s)) · x ds (1.5)

=
(
−γ

∫ t

0
G(s)ds

)
· x (1.6)

= − 2π k(t) · x, (1.7)

where

k(t) =
γ

2π

∫ t

0
G(s)ds. (1.8)
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Figure 1.6: Sample MRI data, and the image recon-
structed from this data.

The negative sign is due to the negative precession
direction of protons. The magnetization at time
t is the original magnetization multiplied by the
phase accrued during the free precession interval

Mxy(t,x) = Mxy(x)e−i2πk(t)·x. (1.9)

where the time variable is suppressed for the initial
magnetization.

The RF receive coil is spatially non-selective, and
simply integrates over the entire volume

s(t) =
∫
X

Mxy(x)e−i2πk(t)·xdx (1.10)

where X ranges over the subject volume.

This expression has a familiar form. The factor
e−i2πk(t)·x is a Fourier kernal. By integrating over
x we are taking the Fourier transform of the spatial
distribution of the initial magnetization Mxy(x).
We will define the forward transform to have the
minus sign in the exponent. At time t the signal
we receive s(t) is simply the value of the Fourier
transform of Mxy(x) sampled at the spatial fre-
quency k(t). Acquiring an MRI image is per-
formed by sampling the spatial frequency content
of the image directly, and then performing an in-
verse Fourier transform to reconstruct the image.
Figure 1.6 shows an example of the raw acquired
spatial frequency data, and the image that it re-
constructs to.
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Figure 1.7: A 2DFT, or spin-warp, pulse sequence
and k-space coverage.

1.3 MRI Acquisition Methods

From the perspective of Eq. 1.10 it is clear that
there are many different ways to acquire MRI data.
The requirement is simply that enough of spatial
frequency space, or k-space, be sampled to allow
an image to be reconstructed.

1.3.1 2DFT, or Spin-Warp

By far the most common way to sample k-space
is with a rectilinear raster scan. This is known
as a 2DFT acquisition, because the 2DFT of the
image is directly acquired. Image reconstruction is
performed with a simple 2D FFT. This method is
also known by the more colorful name “spin-warp”.

MRI acquisition methods are most often described
by pulse sequence diagrams, that show the tim-
ing and amplitudes of the application of the gra-
dient fields on different axes, as well as the timing
of the RF pulses. A pulse sequence for a 2DFT
pulse sequence is shown in Fig. 1.7. Two basic el-
ements of the pulse sequence are identified by dot-
ted lines. The first is the slice-selective excitation
that was described schematically in the previous
section. This prepares the magnetization in a slice
for imaging.

The second element is the 2DFT acquisition gra-



1.3. MRI ACQUISITION METHODS 5
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Figure 1.8: Alternative k-space trajectories.

dients. The k-space position is the integral of the
gradient waveforms. The 2DFT acquisition con-
sists of two stages. First, gradient lobes move the
k-space position to the beginning of one of the
raster lines. A fixed area negative x gradient lobe,
called a dephaser, moves the kx position to the
same initial value for each line. A variable area y
gradient lobe, called the phase-encode, moves the
ky position to a specific line in k-space. Then a
constant gradient is applied to the x gradient to
scan along this line in k-space, while the raw MRI
data is acquired. This is repeated typically 128
or 256 times, until enough data has been acquired
to reconstruct an image. A 2D FFT is then ap-
plied to perform the reconstruction. The example
shown in Fig. 1.6 was acquired and reconstructed
in this way.

1.3.2 Other Alternatives

2DFT imaging has many advantages. It is insensi-
tive to many hardware imperfections, and to varia-
tions in the main magnetic field. However, because
it requires a large number of acquisitions, it is rel-
atively slow. On a current high-performance 1.5 T
whole body system, the minimum repetition time,
TR is on the order of 2.5 ms. To acquire 128 phase-
encodes, or lines in k-space, takes 384 ms, which is
not quite 3 images per second. This is inadequate
for many high-speed imaging applications, such as
real-time imaging of the beating heart.

There are many other alternatives methods for ac-
quiring the k-space data for MRI images. Several
important ones are shown in Fig. 1.8. Many oth-
ers can be imagined. In a perfect world, where the
gradient waveforms do exactly what they should,
the subject is precisely on resonance, and the MR
signal persists indefinitely, any of these would work
well. In practice, none of the conditions hold, and
the success of these different approaches depends
critically on the effects of these imperfections, and
whether these effects can be corrected in the re-
construction.

The spiral acquisition shown in Fig. 1.8a typically
starts at the origin of k-space, and spirals outward.
This can be done in a single acquisition, or in mul-
tiple rotated acquisitions, so as to cover k-space
uniformly. The main advantages of spirals are very
good flow properties, and flexibility in trading off
readout duration and imaging speed. The main
disadvantage is image blurring with changes in the
resonant frequency. Reconstruction methods that
correct for this blurring will be a major subject in
this class.

The projection acquisition methods shown in
Fig. 1.8b was actually one of the earliest methods
used for MRI, due to the previous success of CT.
It was largely abandoned with the advent of spin-
warp, but has been revived for several specific ap-
plications. One is 3D angiography, where a 3D vol-
ume is reconstructed, and then reprojected. The
imaging characteristics of projection acquisitions
allows tremendous undersampling while maintain-
ing resolution for this case of sparse, high contrast
objects. The main disadvantage of projection ac-
quisitions is off-resonance blurring, as for spirals.
Many of the spiral reconstruction methods can be
adapted to projection acquisitions.

The most common high-speed imaging method is
echo-planar, or EPI, shown in Fig. 1.8c. This can
be considered as an extension of spin-warp, where
multiple lines in k-space are acquired after a single
excitation. This can be done in a single shot, or



6 CHAPTER 1. BASICS OF MAGNETIC RESONANCE IMAGING

in multiple interleaved acquisitions. EPI has the
advantage of allowing for a 2DFT reconstruction,
and that off-resonance produces geometric distor-
tion primarily, and no image blurring. EPI has
the disadvantage of producing image ghosts for al-
most any hardware imperfection or subject mo-
tion. Hence, EPI reconstruction requires great at-
tention to detail to make high fidelity images, as
will be described.

1.3.3 Sampling, FOV, and Resolution

In this course we are often going to need to be able
to compute specific numbers for sample spacing,
field of view, and image resolution. The relation-
ship between these parameters was described in
[1]. The basic relationships are summarized here.

There are four interrelated parameters in each di-
mension. For the x dimension the first is the field
of view FOVx. This is the dimensions of the im-
age, and is typically measured in centimeters. The
next is the image resolutions ∆x. Ideally this is
the minimum distance that two point sources can
be resolved. It is typically cited in millimeters.
The third is the maximum radius in k-space that
was collected, kx,max, measured in cycles/cm. The
final parameter is the density of sampling in k-
space, ∆kx. The FOV and kx,max are illustrated
in Fig. 1.9.

The relationship between these parameters is sim-
ple. In each case, the extent in one domain multi-
plied by the resolution in the other domain is unity.
Hence

FOVx∆kx = 1 (1.11)

and
2kx,max∆x = 1 (1.12)

since the extent in k-space goes from −kx,max to
+kx,max. In addition, if Nx is the number of sam-
ples in either domain, then

FOVx = Nx∆x (1.13)
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Figure 1.9: Definitions of FOV in image space, and
2kx,max in k-space.

and

2kx,max = Nx∆kx. (1.14)

These equations make intuitive sense if you con-
sider the effect of phase encoding steps for the
case of the y dimension. Each step adds one cy-
cle of phase shift across the FOV. If one phase
encode is zero, then the next, at +∆ky produces
one cycle over the FOV, so ∆ky = 1/FOV , and
FOV ∆ky = 1.

1.4 Physical Realities

In the derivation of the signal equation we ne-
glected a number of factors that will be important
during this course. One important factor is that
the resonant frequency of the subject varies with
space. Another is that the magnetization decays
while data is being acquired. Finally, the gradient
system interacts with other parts of the scanner,
and this contributes phase errors, and inaccuracies
in k-space trajectories.
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1.4.1 Variations in Resonant Frequency

Variations in resonant frequency come from two
sources. One is that different chemical species have
different resonant frequencies. In imaging we are
mostly concerned with water. However, the body
also contains lipids which have several resonant fre-
quencies. The main component of concern is 3.4
ppm away from the water line, or about 217 Hz
away from the water line at 1.5T. Since data acqui-
sition window can be tens of milliseconds in dura-
tion, the lipid-water shift can result in many cycles
at the lipid frequency when tuned to the water fre-
quency. This causes a displacement in spin-warp
and EPI acquisitions, and blurring with spiral and
projection acquisitions.

The other source of resonant frequency variation
is due to the magnetic susceptibility of tissue, and
the geometry of the subject. Tissue has a magnetic
susceptibility of about 10 ppm with respect to air,
or a vacuum. According to Maxwell’s equations,
magnetic flux is conserved at a boundary perpen-
dicular to magnetic field lines, so that there is a 10
ppm discontinuity in field, and hence resonant fre-
quency at such boundaries. Other boundary orien-
tations and geometries produce lesser shifts. The
result is that a body itself produces a variation in
resonant frequency of several ppm, with the reso-
nant frequency denoted by ω(x).

1.4.2 Relaxation

Magnetization decay during the acquisition is due
the loss of coherence of the spins. This can be
due to the irreversible exchange of energy between
spins, which is known as T2 decay, or spin-spin
relaxation. It can also be due to a reversible loss of
coherence, from variations of precession frequency
over a voxel. This is known as T ∗

2 decay. The
formation of spin-echoes suppresses T ∗

2 .

If the off-resonance reception and the T2 signal de-
cay are included in Eq. 1.9, we get

Mxy(t,x) = Mxy(x)e−i2πk(t)·xe
(− 1

T2
−iω(x))t

.
(1.15)

Integrating over space, as before, the received sig-
nal becomes

s(t) =
∫
X

Mxy(x)e(− 1
T2

−iω(x))t
e−i2πk(t)·xdx.

(1.16)
The received signal is samples of a Fourier trans-
form. The difference is that the Fourier transform
corresponds to a magnetization Mxy(x) that has

been weighted by e
(− 1

T2
−iω(x))t.

1.4.3 Eddy Currents

Another important source of errors in MR data
acquisition is due to eddy currents induced by the
gradient coil. The gradient coil is designed to pro-
duce linear variations in the z component of the
magnetic field inside the coil. However, it also
produces fields outside the coil, and these can in-
teract with other elements of the scanner, such as
the aluminum bore tube. The changing field from
the gradient coil induces eddy currents in the bore
tube. These eddy currents produce an additional
field inside the gradient coil that tends to oppose
and lag the desired gradient field, corrupting the
MR measurements.

Two methods are commonly used to minimize the
effects of eddy currents. One is to add an active
shield to the gradient coil. This is essentially a
larger coil that enclosed the primary gradient coil,
that cancels out the external fields that would oth-
erwise interact with the bore tube. The other ap-
proach is to pre-emphasize the gradient waveform,
so that the combination of the fields from the gra-
dient coil and the eddy currents produce the de-
sired waveform. These both work well, and elimi-
nate the vast majority of the errors from eddy cur-
rents. However, there is frequently enough residual
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error to require additional compensation in pulse
sequence design, or correction in reconstruction.

The magnetic fields produced by the eddy currents
cause an additional frequency modulation of the
received signal. This modulation is a function of
the applied gradient, and is both time varying and
spatially varying. We will model this frequency as

ωe(x, t) = γG(t) ∗ h0(t) · 1 +
γG(t) ∗ h1(t) · x (1.17)

= ωe,0(t) + γGe(t) · x (1.18)

where the dot product with 1 simply sums the con-
tributions from each axis. This model consists of
two terms. The first term (the “B0” term) is con-
stant in space, and has a time dependence that is
given by a convolution of the gradient waveform
with an impulse response. The second term (the
gradient term) is linear in space, and has a time
dependence that is the convolution of the gradient
waveform with a second impulse response.

There are higher order spatial dependence terms
that we are neglecting. Also, the assumption of
a convolution temporal dependence is not always
reasonable. For example, if the eddy currents oc-
cur in the highly saturated iron core of a resis-
tive magnet, the response can be very non-linear.
However, for a high-field superconducting system,
this approximation accounts for most of the eddy-
current effects.

The real reason for using this model is that the two
terms correspond to physical quantities we control.
The first is the center frequency of the system,
and the second is the gradient waveform. On a
high-performance system, each of the two impulse
responses is measured experimentally as part of
system calibration. The first term is corrected by
computing the modeled B0 term, and using this as
the system center frequency. As long as the system
and the magnetization accurately track each other,
it doesn’t matter that the frequency is drifting.

The second term is corrected by applying a pre-
emphasis filter to the gradient waveform. The
combination of the field from the primary gradi-
ent and shield, and the fields due to eddy currents
produces the desired, ideal, gradient field. The
use of gradient pre-emphasis filters has long been
a part of all MR systems.

In practice, even after all of these corrections, there
are still significant eddy-current induced frequency
shifts that effect the acquired data. There are sev-
eral reasons for this. One is that it is difficult to
measure and model the very short time-constant
terms. Another is that other conducting elements,
like RF coils, can contribute, and these vary from
acquisition to acquisition as the RF coils and their
placement change.

For our purposes, we have to keep in mind that
eddy currents will corrupt our measurements. The
eddy currents produce a time varying frequency
shift. The received signal will be phase modulated
by the integral of this frequency shift over time∫ t

0
ωe(τ) dτ =

∫ t

0
ωe,0(τ) dτ +∫ t

0
γGe(τ) · x dτ(1.19)

= θe(t) + 2πke(t) · x (1.20)

The signal equation neglecting T2 and off-
resonance, is then

s(t) =
∫
X

Mxy(x)e(−iθe(t)−i2πke(t)·x)e−i2πk(t)·xdx

(1.21)

=
∫
X

Mxy(x)e−iθe(t)e−i2π(k(t)+ke(t))·xdx,

(1.22)

where the minus sign in the exponent comes from
the negative sense of the precession of protons. We
see we should expect two types of errors. One is a
spatially isotropic phase modulation that depends
on the gradient waveform. The second is an error
in the k-space trajectory, that also depends on the
gradient waveform.
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1.4.4 Implications for Pulse Sequence
Design

There are many different methods that have pro-
posed for acquiring MR data. The success of a
particular method depends critically on how each
of the factors described above effect the recon-
structed images. Ideally, imaging methods should
be designed to be immune to these errors. Spin-
warp is an excellent example. Off-resonance, T2,
and B0 and gradient eddy current terms produce
miminal or benign artifacts in spin warp. The cost
for this is long scan times. Fast imaging meth-
ods are based on acquisitions that are sensitive to
these errors, but in ways that can be character-
ized and corrected in reconstruction. For exam-
ple, eddy currents produce ghosts in EPI. How-
ever, these can be estimated and corrected as part
of the reconstruction. Off-resonance causes blur-
ring in spirals, but again this can be significantly
corrected in reconstruction.
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